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We formulate the N-fold Backlund transformation for the deformed nonlinear 
SchrOdinger equation following the idea of Neugebauer et al. Starting with trivial 
solutions, we construct explicit one-soliton solutions in two distinct cases of 
deformation from our transformation for N = I. These solitons have space-time- 
dependent amplitude and velocity. 

1. I N T R O D U C T I O N  

The Backlund transformation (BT) is a useful tool for the generation of 
multisoliton states of nonlinear integrable systems (Miupa, 1976). Recently 
various methods have been suggested for the construction of  Bacl0und trans- 
formation (Matveev and Salle, 1991). The BT usually works sequentially for 
the generation of the one-soliton state from the trivial one, the two-soliton 
solution from the one-soliton solution, and so on. But Neugebauer and Meinel 
(1984) proposed a method by which it became possible to construct an 
N-fold BT which can produce a general N-soliton solution by starting from 
a trivial solution in a single stroke. Such a methodology has been applied in 
the case of  the self-dual Yang-Mills equation and chiral field equations 
(Pohle, 1984) and in some problems of  general relativity with commuting 
Killing vectors. 

On the other hand, recently Zakharov et  al. (1987) showed that if we 
consider the eigenvalue k of the spectral problem to be a function of space 
and time, then new (x, t)-dependent integrable systems can be generated. 
[For earlier work see Gupta et al. (1979).] But as the eigenvalue k becomes 
a function of (x, t), it becomes pointless to speak of analyticity in h, which 
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is actually the basis of the inverse problem. In a recent work De and Roy 
Chowdhury (1991) show that by invoking the analyticity in the "constant 
part" of  the parameter h (which is now a function of x, t) it is possible to 
reconstruct the nonlinear field through a Riemann-Hilbert  problem. 

In this paper we apply the formalism of Neugebauer to construct an N- 
fold Backlund transformation for the deformed nonlinear SchrOdinger (NLS) 
equation and show that for N = 1 it gives correctly the one-soliton solution 
whose amplitude and speed may be functions of x and t. Among the two 
types of deformations of the NLS equation, the first is simple in the sense 
that by a proper change of dependent and independent variable we can map 
this equation to the original NLS equation and the final result of  the soliton 
solution can be checked directly. On the other hand, the second type of 
deformation leads to a new (x, t)-dependent NLS equation for which it is 
not possible to construct such a transformation. 

2. F O R M U L A T I O N  

The two types of nonlinear Schr~dinger equation under consideration 
are written as follows: 

Case (a): 

i ( q t + ~ ) + q ~ + _ 2 1 q l 2 q = O  (1) 

This is sometimes referred to as the cylindrical NLS equation. 
Case (b): 

iqt + qxx + qx +- 21ql2q = ~ T- 4q f (2) 

The Lax pair associated with these equations is written as 

~x = uO, ~ ,  = VO (3) 

with 

u = ihtr 3 + iqtr+ +_ Uqtr_ (4) 

for both cases (a) and (b), and the corresponding time parts 

V Ca) = -2ih2tr3 - 2ih(qtr+ +_ "~tr_) + (+__ilql2tr3 - qxcr+ +- -qxtr-) (5) 

whence hx = l14t and h t = -h/t,  so that 

X = (Z + xl4)(llt) (6) 
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and 

V(b) = -2ih2cr3 - 2ih(qcr+ + qcr-) + [(ilqlZ + 2i f lql---~Zdx) 

(7) 

along with 

hx = h- Xt - 4h2 
x x 

so that 

x 
x - (8) 

4(z + t) 

In each case the spectral parameter h becomes a function of (x, t), as shown 
in equations (6) and (8). Here Z is a constant of integration. In M. De (1991) 
we have shown that it is possible to prove the analyticity properties of the 
Jost functions in the variable Z. 

Let D ~ be an initially known eigenfunction corresponding to a trivial 
solution q0 of either (1) or (2) and let the corresponding Lax matrices be 
denoted as u ~ and V ~ We set out to construct a new solution �9 such that 

= p~0 (9) 

whence �9 will obey again equation (3). Here P is a 2 X 2 matrix function 
which satisfies the following conditions. 

(i) P is a polynomial in Z with matrix coefficients Q: 

FPII(Z) PI~(Z) I 
P = P(Z) = LP2t(Z ) P22(Z) j = ~] G(xt)ZJ (10) 

j=0 

(ii) P(Z)M(Z) = M(Z)P(Z), where 

M(Z) = ~ - Z 0 for real constant ~ (11) 

M = ( ?  1 : )  for imaginary constant ix 

(iii) We have 

 01, . 2 ,  
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(iv) We have 

Det QN = 1 (13) 

(v) Z = Zj, for j = 1 . . . . .  N, are the zeros of  Det P(Z) provided that 
Det ~~ areregular  and there exists a scalar potential factor bj, j = 1 . . . . .  
N, such that +(Zj) = bji(Zj)  at the zeros of  Det P(Z). Here 

[+,(xtz) ,~,(xtz)] 
,I, = [ 6 ( z ) ;  i f ( z ) ]  = L+z(xtz) q)z(xtz)] ( 1 4 )  

(vi) There is a gauge freedom for P so that P transforms to P '  via 

P' = SP with s = (ei; xt) e -ix(xt)O ) 

Now from conditions (ii) and (iii) we immediately deduce 

Mlz(Z)  - -  
PI2(Z) - M21(Z) P21(Z) (15) 

and Ptl(Z) = P22(Z). Also from the condition that the Pit are polynomial in 
Z we obtain 

PI2(Z) = (tit, + Z)(ao + a lZ  + a2  Z 2  --F . . -  -~- -aN_l ZN-1) 

P21(Z) = (~ - Z)(ao + a lZ  + a2 Z2 + " '"  + aN-1Z N-l) (16) 

Pll(Z) = Ao + AlZ  + A2 Z 2  '1- " ' "  -F -AN ZN 

P22(Z) = Ao + AIZ + A2 Z2 + "'" + AN ZN 

It may now be observed that altogether there are 2N + 1 unknowns (functions 
of  x and t). In the ensuing discussions we will set up equations for determining 
these functions. 

Let us define % by 

+ o ( z j )  - bj~O(Zj) 

~j  = + o ( z j )  - bj~O(Zj)  
(17) 

where Zj (j  = 1, 2 . . . . .  N) are zero of Det P(Z) and bj = const. Then using 

~~ = u~176 (18) 

we get for case (a) 

,qoo  o%= 2i + % + iqo + (19) 
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where qo is the solution of the nonlinear system corresponding to ~o. Similarly 

otj, = - 4 i  + --- 2ilqol 2 aj + --+2~o + x 

+ qo~ - 2iqo + x - qox (20) 

For case (b) we get 

ix 
~jx = iqo + 2(Zj + t--------~ ~j ~ ~~ 

= (+  2ix  ~_2o~a2. (21) Otjt . ' , ' ~ - - ~ q o  + qox + x ]  J 

( 4ix2 12 f Iq~ ) 
+ 1 6 ( Z j + t )  2 -  2ilqo +-4i  x dx  aj  

+ 4(Zj + t) qo - qox 

Now let us go back to the condition 

dP(xtZ) = P(  Z)cb~ (22) 

We now impose the condition that the zeros of Det P(Z), that is, the Zj, 
all are independent of (x, t). Now from equation (22) we have 

Det (I) = Det P Det (I) ~ (23) 

whence Det (I)(Zj) = 0, implying 

~bl(Zj)  - -  bjq~l(Zj)  and (~2(Zj) ---- bjt.P2(Zj) 
along with the condition 

P21(Zj)t+~ - b/pl~ + P22(Zfl[(~~ - b,~~ = 0 

o r  

P2,(Zj)ctj + P22(Zj) = 0 (24) 

where ctj is the quantity defined in equation (17). With the explicit forms of  
PU given in equation (16), equation (24) leads to conditions for the determina- 
tion of  the coefficients aj,  A j ,  etc. 

3. DETERMINATION OF P0 

It is evident from the previous analysis that the most important aspect 
of our formulation is the construction of the coefficients of the matrix Pij. 
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Substituting from equation (16) in (24), we get, after dividing by aN-l, 

Xo + X, Zj + X2Z 2 + " "  + NxZ 7 + Yo[3j + YI~jZj + r2f~jz? 

+ YN_2f3jZ N-2 + [3jZ N- '  = 0 (25) 

f o r j  = 1, 2 . . . . .  N, where [3j = %(IX - Zj), Xi = AllaN-l, and Yi = ai/ 
aN-1. Similarly, using the relation P11% + Pt2 = 0 and defining ZN§ = ~" 
and !3N+j = (iX + Zi) t~ j,  we get the following equation: 

Xo + XIZN+j + X2Z~+j + "'" + XN-1ZN+jN-~ + XNZ,~+j 

+ YO~N+j + YI~N+jZN+j + "'" + N-2 N-I YN-2~N+jZN+j + BN+jZN+ j = 0 (26) 

These and similar equations for Xi, Y~ can then be written in a compact 
matrix form 

M V =  W 

where V, W, and M are as follows: 

1 Z, Z 2"'" Zl  N-I Z N 

1 z~ z ~ - - - z ~ - '  z ~  
. . . . .  . ~ 1 7 6  . . .  

. . .  . .  . . . .  . . .  

M =  1 ZN Z~ '"  Z~ -1 Z~ 
1 ZN+, Z~+I "' 'zuN+[ Z~+, 

. . . . .  . ** . . . .  

1 ~N z~ , , '"z~;  1 z ~  

V = [ X 0 ,  X 1 . . . . .  XN, Yo . . . . .  YN+2] t 

(27) 

[31  ~ l Z l - ~  I ~ 1 Z N - 2  

[S2 132Z2 "'" ~2Z~ '-2 

ISN IS~ZN "'" IS~Z~ -2 
13N§ 13N§ ZN§ N-Z "'" ~N+IZN+I 

~N ~ z ~ . . .  f ~ z ~  2 

(28) 

W N - I  N - 1  N - I  
= - - 1 3 N + l Z N + l ,  �9 �9 - -  1 3 z N Z ~ f q '  [-131Z~ , -132Z2 . . . . . . .  

which can be solved at once for Xi and Y/; for example, 

Det M[W] 
T = XN -- (29) 

Det M 

where Det M[W] is the 2N • 2N determinant in which a particular column 
is substituted by the vector W. 

4. G A U G E  T R A N S F O R M A T I O N  

For case (a) we observe from equation (6) that the u and V matrices of 
the Lax pair possess first- and second-order poles at k = ~. We demand that in 
general our Backlund transformation and the associated gauge transformation 
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keep this analytical structure intact. Of course in general the demand is that 
the analyticity property remains unchanged. From general considerations we 
can write that u(k), V(k) will have the following structures: 

Case (a): 

hliot i k )  ( i k  ib)  
u(h) = ~-ik -iot + • - ik (30) 

(Laik i k )  ( i k  ib )  [• 2 -bx ) 
V(h) = -2X 2 -iet - 2X +-ib - ik + \ • -T-ilbl 2 (31) 

Case (b): 

i k 
u(h)= ih(k ?or) + (• ~ )  (32, 

= _ + -box - bolx~ 
V(h) -2ih2(k ?c~) 2ih(kb 0 b0) (+__~oxCO+__~o/X Co ] 

where 

(33) 

Co= ilb012--+2if b~ dX 

If the gauge transformation is effected by the matrix S given in condition 
(vi), then we get 

or' = or, k' = ke 2ix, K' = K + Xx 

along with 
b' = be 2ix, -b' = -be -2iX (34) 

So if initially K = 0, we must have K' = 0, whence Xx = 0. Similarly we 
can show that • = 0. So • must be independent of (x, t). Now we utilize 
the following condition satisfied by P: 

u(Z)P(Z) = P~(Z) + P(Z)u~ (35) 

or  

where 

N N N 

[ZO + B] ~ QjZ j = ~ Qjx z j  + ~ QjZJlZD O + n~ 
j=l  j=l j= l  

f ictx/(4t) + ik ik + ib 
B = ~ - ik  • i-b -iax/(4t) - ik ] 



1028 Roy Chowdhury and Pal 

Here the function for which the solution is to be found is q = b' = be 2i• 
We have 

Bo = ( ix/at iqo ~ [ ioLIt iklt ~ 
\++-~o -ix~at]' D = ~-ik/t  -iodt] 

Do= (i/ot Oit) ,  QN = (_o~N_, a / ~ l )  

(36) 

From equation (35) and the properties of b, k, OL, and • we get 

iANx e2ix + qoaN_le 2ix 
q = (37) 

aN-1 

where we have taken o~ = OL' = 1 and k = k' = 0, and q = b' = be 2ix. Now 
let us recall equation (29) and observe that with the help of the expression 
for T we can rewrite (37) as 

i(-dN-lT~ + 7"tiN-l.• + qoaN-i e2ix 
q = (38) 

aN- 1 

Also the condition that Det QN = 1 leads to 

aN-lau-i  = (1 + / ~ - l  (39) 

5. PARTICULAR SOLUTIONS 

To prove the viability of our formulas (38), we show here that if we 
start from the trivial solution qo = 0, then in both cases (a) and (b) we get 
the one-soliton solution which was obtained by other methods previously. If 
we set q0 = 0, then from equation (38) we get 

i[T(1T + 1)-l/2]x e2ix(xt) 
q = (~/. + l)_l/2 (40) 

F o r N =  1 we get 

Z~ - Zi  ( 4 1 )  

where the space-time variation of oq is given by, for case (a), 
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Cqx = 2i + eq 

( ~  ]-~x zr/Z'x' oq t = - 4 i  + + -Z-;"S'~ l a ,  

It is not difficult to observe a common solution of (42) and given by 

(42) 

(43) 

Now we take Zl = a + ib, and using this expression for Ctl in (43), we get 

e2i• { i[-~ ]} 
q(xt) = - ~ - e x p  - + 2ax + 4(a 2 - b 2) 

where 

{ ] [2b ]} • N e x p  t ( 4 a  + x )  + M e x p  - t ( 4 a  + x )  (44) 

-~ + 1 - 2ib 

which is the form of the one-soliton solution obtained in De and Chowdhury 
(1991) by the Riemann-Hilbert  transform. 

Let us now consider case (b). In this situation we again choose q0 = 0, 
so that 

ix 
% - 2(Zj + t) etj (45) 

ix 2 

aJ' = 4(Z~ + t) 20tj 

Again a common solution can be obtained and we get 

Now proceeding as before, we obtain 

Aox + AixZl q(xt) - e 2ix 

( 1 ~  - ZOao 
(46) 
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where 

Al (p~ + Zl)(Otl) -1 --  ( ~  --  Z l ) ~ l  

ao (Zl - Z0 (47) 

Again assuming Zt  = a + ib, after considerable amount of algebra we get 

q(xt)  = (01 + i02)(~1 + i~2)e A (48) 

where 

x2(a + t) 2 ] A = -bx---~2 + i 2• 
m m 

(1~ 2 - a  2) + (ix 2 - b  2) 
01 = (txl - a) 2 + (P~2 - b) 2 

2bp~l - 2a~2 
02 = (~lq -- a )  2 + (!1,2 --  b)  2 (49) 

2bx  C 
~l = m C + A e  -2bx2/m + B e  2bx2/m 

2x(a + t) 
~ 2 -  

m 

6. DISCUSSION 

In the above analysis we have shown how the N-fold Backlund transfor- 
mation can be constructed for the deformed NLS equations in general. The 
procedure has been illustrated with two very important cases. For N = 1 and 
zero seed solution we at once obtain the one-soliton solution. It may be 
observed that the solution obtained in case (a) is valid everywhere except at 
t = 0, where it has a singularity, which was also present in the equation 
itself. In the second case (b), the situation is slightly different. For example, 
this solution can become infinite for some values of t, depending upon the 
choice of the parameter values. 
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